Problem 12. Let X and Y be Banach spaces and $T \in B(X, Y)$.

(a) Show that the mapping

$$\hat{T}: X/_{\ker T} \to \operatorname{ran} T$$
$$[x] \mapsto Tx$$

is well-defined, bijective and bounded with $\|\hat{T}\| = \|T\|$.

- (b) Show that the following are equivalent:
 - (i) $\operatorname{ran} T$ is closed,
 - (ii) \hat{T} has a bounded inverse,
 - (iii) There exists a constant K > 0, so that for all $y \in \operatorname{ran} T$ there exists a $x \in X$ with $||x|| \le K ||y||$ and Tx = y.

Problem 13. Let X be a Banach space and $T \in B(X)$. For $\lambda \in \mathbb{C} \setminus \sigma(T)$ define $\delta(\lambda) = d(\lambda, \sigma(T)) = \inf_{\xi \in \sigma(T)} |\lambda - \xi|$. Show that $||R_T(\lambda)|| \ge \delta(\lambda)^{-1}$.

Problem 14. Let \mathcal{H} be a Hilbert space. An operator $T \in B(\mathcal{H})$ is called bounded from below if there exists a constant C > 0 so that for all $x \in \mathcal{H}$

$$\|Tx\| \ge C \|x\|$$

We denote

 $\sigma_{ap}(T) = \{ \lambda \in \mathbb{C} \mid \lambda I - T \text{ is not bounded from below} \},$ $\sigma_d(T) = \{ \lambda \in \mathbb{C} \mid \operatorname{ran}(\lambda I - T) \text{ is not closed} \}.$

Show:

(a)
$$\sigma_{ap}(T) = \{\lambda \mid \exists (x_n) \subseteq \mathcal{H} \text{ with } \|x_n\| = 1 \text{ and } \|(\lambda I - T)x_n\| \xrightarrow[n \to \infty]{} 0\}$$

(b)
$$\sigma_{ap}(T)$$
 is closed.

- (c) $\sigma(T) = \sigma_{ap}(T) \cup \sigma_d(T)$.
- (d) The boundary of $\sigma(T)$ is contained in $\sigma_{ap}(T)$.
- (e) $\sigma_p(T^*) = \sigma_d(T).$
- (f) If T is normal then $\sigma_d(T) \setminus \sigma_{ap}(T) = \emptyset$, i.e. $\sigma(T) = \sigma_{ap}(T)$.

Problem 15. Let X be a Banach space and $S, T \in B(X)$.

(a) Show that the following do not hold in general:

(†)
$$r(ST) \le r(S) r(T) \qquad r(S+T) \le r(S) + r(T)$$

(b) Show that both inequalities in (†) hold if S commutes with T (i.e. ST = TS).

Problem 16. Let X be a Banach space and $T_n \in B(X)$ a sequence of invertible operators. Assume that the sequence has a limit $T = \lim T_n$, which commutes with all T_n (i.e. $TT_n = T_n T$ for all n).

- (a) Show that in general T is not necessarily invertible.
- (b) Show that if we also assume that $\sup_n r(T_n^{-1}) < \infty$, then T is invertible.